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Compressed Sensing – the heuristic

I Real images and signals are compressible

I Equivalently: Few large coefficients, eg in Wavelet basis

I Fewer than nominal degrees of freedom
not 106 pixels, just 104 wavelet coeffs, + positions of those
coefficients

I Standard sampling: 106 measurements

I “Morally” c · 104 measurements should suffice
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Compressed Sensing MRI

I ”Sparse MRI – The Application of Compressed Sensing in
Magnetic Resonance Imaging” – Michael Lustig, DLD, John
Pauly 2007, Magnetic Resonance in Medicine

I “Compressed Sensing MRI” – Michael Lustig, John Pauly,
Juan Santos, DLD IEEE Signal Processing Special Issue on
CS, March 2008

I Inspired by CS theory
I Rapid Contrast-Enhanced 3D Angiography,
I Whole-Heart Coronary Imaging,
I Brain Imaging, and
I Dynamic Heart Imaging.
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A Theoretical Formalization of Compressed Sensing

Ingredients
I Sparsity.

An object x0 ∈ RN with k � N nonzero coefficients in a fixed basis

I Random Undersampled Measurements
Measure y = Ax0 with random n by N matrix A (eg iid Gaussian).

I Nonlinear Reconstruction Attempt reconstruction with x1 solving

(P1) min ‖x‖1 subject to y = Ax

AKA: Minimum `1, Basis Pursuit.

I Computationally Feasible; compare NP-Hard:

(P0) min ‖x‖0 subject to y = Ax

I Surprise: often in the n < N underdetermined case (P0) and (P1) will
have the same, unique solution.

I Voluminous literature IEEE 2001-today.
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Object With k-Sparse Coefficients
Object With k-sparse, Nonnegative Coefficients
Object with k-Simple, Bounded Coefficients

Phase Transition for ±

Theorem. There is a function ρCG (δ,±) with the following characteristics:
Fix δ > 0.
If n/N > ρCG (k/n;±)(1 + δ) then with overwhelming probabilty for large n,N,

x1 = x0

If n/N < ρCG (k/n,±)(1− δ), then with overwhelming probabilty for large n,N,

x1 6= x0.

DLD (Discr. & Comput. Geom., 2006);
DLD and Jared Tanner (JAMS, 2009)
fully rigorous, explicit calculation of ρCG using special functions.
Methods: Combinatorial Geometry [Affentranger and Schneider
(1992), Vershik and Sporyshev (1992)].
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Object with k-Simple, Bounded Coefficients

Empirical Results: ±
Random Matrix A, δ = k/n, ρ = n/N, N = 400.
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Nonnegative coefficients

I Underdetermined system of equations:

y = Ax , x ≥ 0.

I Sparsest Solution:

(NP+) x0 = argmin ‖x‖0 s.t. y = Ax , x ≥ 0

I Problem: NP-hard in general.

I Relaxation:

(LP+) x1 = argmin 1′x s.t. y = Ax , x ≥ 0.

Standard linear program
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Phase Transition for +

Theorem There is a function ρCG (·,+) : (0, 1] 7→ (0, 1] with the
following characteristics: Fix ε > 0. If n/N > ρCG (k/n,+)(1 + ε)
then with overwhelming probabilty for large n,N,

x1 = x0

If n/N < ρCG (k/n,+)(1− ε), then

x1 6= x0.

DLD and Tanner (PNAS, 2005[a,b]) fully rigorous, explicit
calculation of ρCG using special functions. Methods:
Combinatorial Geometry [Affentranger and Schneider (1992),
Vershik and Sporyshev (1992)].
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Empirical Results +

Random Matrix A, δ = k/n, ρ = n/N. N = 400.
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Object with k-Simple, Bounded Coefficients

I Underdetermined system of equations:

y = Ax , −1 ≤ x(i) ≤ 1, 1 ≤ i ≤ N.

I Simplicity: #{i : |x(i)| 6= 1} small.

I Simplest Solution:

(NP�) x0 = argmin#{i : |x(i)| 6= 1} s.t. y = Ax , x ≥ 0

Problem: NP-hard in general.

I Relaxation:

(LP�) x1 = argmin 1′x s.t. y = Ax , x(i) ∈ [−1, 1]

Standard linear program (feasibility problem)
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Phase Transition for �

Theorem. Set ρCG (δ,�) = (2− δ−1)+. Fix ε > 0.
If n/N > ρCG (k/n,�)(1 + ε) then, with overwhelming probabilty
for large n,N,

x1 = x0

If n/N < ρCG (k/n,�)(1− ε), then , with overwhelming probabilty
for large n,N,

x1 6= x0.

DLD and Jared Tanner (2008, in press D&CG)
Exact finite n identities in Geometric Probability
Methods: Wendel’s Theorem, Winder’s Theorem, Oriented
Matroids.
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Object With k-Sparse Coefficients
Object With k-sparse, Nonnegative Coefficients
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Empirical Results �

Random Matrix A, δ = k/n, ρ = n/N. N = 400.
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The Three Theoretical PT’s
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Fast Iterative Algorithms

I Problem: interesting problem sizes for MRI application:
N ≈ 106, n ≈ 104.

I Generic LP at least n2 · N complexity.

I Alternative: iterative algorithms involving C applications
10 < C < 50 of A and A∗ to appropriate vectors

I Complexity: CnN in general eg A iid Gaussian;

I Complexity: CN log(N) for FFT-based matrices.

I Heavily used for large-scale applications:
Jean-Luc Starck (2003-), Miki Elad (2004-), ....
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Simple Iterative Algorithms

Assume columns of A have unit length.

x t+1 = ηt(A∗z t + x t) , (1)

z t = y − Ax t . (2)

I Thresholding ηt( · ) = η(·;λσt , χ)
I λ is a threshold control parameter;
I χ ∈ {+,±,�} controls nonlinearity shape.
I σ2

t = AvejE{(x t(j)− x0(j))2} is MSE

I “Iterative Soft Thresholding”.

I Only apply A and A∗; no need for matrix A itself.
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Thresholding Functions – scalar y , t > 0:

I Case +

ηt(y ; +) =


y − t y > t
0 y < t

I Case ±

ηt(y ;±) =

8<:
y − t y > t
0 |y | < t
y + t y < −t

I Case �

ηt(y ; �) =

8<:
t y > t
y |y | < t
−t y < −t

I Connection to optimization:

ηt(y ;±) = argminx(y − x)2/2 + λ|y |.

I ‘Shrinkage towards 0’. ’Soft Thresholding’ . Used in ‘Wavelet Shrinkage’

DLD, Arian Maleki, Andrea Montanari Message Passing Algorithms for Compressed Sensing



Compressed Sensing
Phase Transitions

Simple Iterative Algorithms
Heuristics

Message Passing Algorithms

MAI Heuristic
State Evolution Heuristic
Failure of Simple Iterative Algorithms

Can Iterative Thresholding Algorithms Work?

I Easy: A orthogonal: solves in one iteration.

I Hard: A nonsingular: with care, asymptotically solves LP
Daubechies, De Mol, Bertero.

I Weird: A, n < N.
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Mutual Access Interference (MAI) Heuristic

I Assume columns of A normalized to unit length.

I Set H = A∗A− I ; call Hx0 the MAI (aka cross-channel
interference)

I A∗y = x0 + Hx0 = x0 + MAI

I For ‘typical’ vector v , ‘random’ matrix A, Hv has marginal
distribution that’s N(0, ‖v‖2).

I A∗y = x0 + Noise.

I First Iteration: x1 = ηt(A∗z t + x0)
I Shrinkage heuristic

I Shrinkage kills ‘small elements’; keeps ‘large elements’
I Small elements mostly noise; large elements mostly signal.
I ‖x1− x0‖22 � ‖0− x0‖22: off to the races!
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Sketch of MAI/Thresholding Heuristics

Lustig DLD Pauly IEE Signal Processing Magazine 2008
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State Evolution (SE) Definition

MSE Map:

Ψ(σ2) ≡ E
{[
η
(
X +

σ√
δ

Z ;λσ
)
− X

]2}
. (3)

State Evolution

I Implicit parameters (χ, δ, ρ, λ,F ), F = FX marginal dist. rv X .

I Explicit paramater σ2.

I State Evolution
σ2

t 7→ Ψ(σ2
t ) ≡ σ2

t+1

(Implicit parameters (χ, δ, ρ, λ,F ) fixed)

I Full state evolves as

(σ2
t ;χ, δ, ρ, λ,FX ) 7→ (Ψ(σ2

t );χ, δ, ρ, λ,FX ) .
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State Evolution (SE) Asymptotics

Two Regions of parameter space:

Region (I) Ψ(σ2) < σ2 for all σ2 ∈ (0,EX 2].
Here σ2

t → 0 as t →∞: SE evolves to σ2 = 0.

Region (II) The complement of Region (I).
SE does not evolve to σ2 = 0.

State Evolution Phase Boundary:

ρSE(δ;χ, λ,FX ) ≡ sup {ρ : (δ, ρ, λ,FX ) ∈ Region (I)} . (4)
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Independence from Object Distribution

Theorem For every distribution F = FX with no atom at zero and
finite second moment EX 2 <∞,

ρSE(δ;χ, λ,F ) = ρSE(δ;χ, λ).

Conclude:

I δ, ρ are ‘what matter’ to SE.

I Graph of ρSE : boundary between phases of (δ, ρ) phase
diagram.
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Computational Geometry-State Evolution Agreement

Finding

For the three canonical problems χ ∈ {+,±,�}:

ρSE(δ;χ) = ρCG(δ;χ) ∀ δ ∈ (0, 1) (5)

I Numerically agree to high accuracy.

I Rigorously proven equality χ = �.

I Rigorously proven asymp. equality χ ∈ {+,±} in limit δ → 0.
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Large Scale Testing of Iterative Algorithms

Maleki and DLD (2009, submitted, IEEE Select. Topics in SP)

I Algorithms:
IST, IHT, CoSamp, Subspace Pursuit , ...

I Matrix Ensembles A:
Gaussian, Bernoulli, partial Fourier, partial Hadamard, ...

I Object Distributions F :
Constant, Double Exponential, Uniform, Power Law, ...

I Problem sizes: N = 800 and 2`, ` = 10, 12, 14.

I Goal: measure phase transitions; tune algorithms to optimize
transitions.

I 3.8 CPU years
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Empirical Results

Maleki and DLD (2009, submitted, IEEE Select. Topics in SP)
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SE is Correct for AMP

Message Passing Iterative Thresholding

Message Passing successful in many other problems: (examples
Gallagher LDPC, Yedidia, Wainwright, Willsky , ...).
Adapt to iterative Thresholding.
N thresholding reconstructions:

x t+1
i→a = ηt

“ X
b∈[n]\a

Abiz
t
b→i

”
, (6)

N residuals:

z t
a→i = ya −

X
j∈[N]\i

Aajx
t
j→a , (7)

for each (i , a) ∈ [N]× [n].

Problem: N iterative algorithms in semi-parallel means N times as
much work as simple iterative algorithms.
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Approximate Message Passing (AMP)

First order Approximate Message Passing (AMP) algorithm

x t+1 = ηt(A∗z t + x t) , (8)

z t = y − Ax t +
1

δ
z t−1〈η′t−1(A∗z t−1 + x t−1)〉 . (9)

η′t( s ) = ∂
∂s ηt( s ).

Feature: Essentially same cost as Iterative Soft Thresholding.
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SE is Correct for AMP

Finding
For the AMP algorithm, and large dimensions N, n, we observe:

I. SE correctly predicts evolution of numerous statistical properties of x t with t.
The MSE, the number of nonzeros in x t , the number of false alarms, the
number of missed detections, and several other measures all evolve in way
consistent with the state evolution formalism to within experimental accuracy.

II. SE correctly predicts the success/failure to converge to the correct result. In

particular, SE predicts no convergence when ρ > ρSE(δ;χ, λ), and convergence

if ρ < ρSE(δ;χ, λ). This is indeed observed empirically.
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Finding 1.a MAI Heuristic is Correct for AMP
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Finding 1.b State Evolution is Correct for AMP
Observables, 1
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Finding 1.b State Evolution is Correct for AMP
Observables, 2
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Finding 2. SE Transition agrees/w AMP Transition, 1
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Finding 2. SE Transition agrees/w AMP Transition, 2
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Universality

I Same experiment, different coefficient distributions
I Constant amplitude nonzeros
I Power Law
I Gaussian

I Same experiment, with different matrix ensembles
I Bernoulli: Fair Coin Tossing ±1.
I Partial Fourier: sample n rows from N × N Fourier
I Partial Hadamard: sample n rows from N × N Fourier
I Gaussian: Ai,j ∼ N(0, 1)
I Uniform Random Projection: A uniform on Haar measure for

orthoprojectors

Empirically: same behavior. Matches findings for LP optimization
in Tanner and DLD (2009, In Press, Phil Trans Roy Soc A)
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Conclusions

I Phase Transitions for LP: rigorous foundation in Combinatorial Geometry

I Standard Iterative Algorithms heuristically like LP but not CG PT’s

I AMP Algorithm slight modification of SIA, does achieve CG PT’s

I State Evolution explains properties of AMP

I SE generates new formulas for PTs, for optimal thresholds in algorithms.
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